Posets of Ordered Compactifications

نویسنده

  • Thomas A. Richmond
چکیده

If (X ′, τ ′,≤′) is an ordered compactification of the partially ordered topological space (X, τ,≤) such that ≤′ is the smallest order that renders (X ′, τ ′,≤′) a T2-ordered compactification of X, then X ′ is called a Nachbin(or order-strict) compactification of (X, τ,≤). If (X ′, τ ′,≤∗) is a finite-point ordered compactification of (X, τ,≤), the Nachbin order ≤′ for (X ′, τ ′) is described in terms of (X, τ,≤) and X ′. When given the usual order relation between compactifications (ordered compactifications), posets of finite-point Nachbin compactifications are shown to have the same order structure as the poset of underlying topological compactifications. Though posets of arbitrary finite-point ordered compactifications are shown to be less well behaved, conditions for their good behavior are studied. These results are used to examine the lattice structure of the set of all ordered compactifications of ordered topological space (X, τ,≤).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COGENERATOR AND SUBDIRECTLY IRREDUCIBLE IN THE CATEGORY OF S-POSETS

In this paper we study the notions of cogenerator and subdirectlyirreducible in the category of S-poset. First we give somenecessary and sufficient conditions for a cogenerator $S$-posets.Then we see that under some conditions, regular injectivityimplies generator and cogenerator. Recalling Birkhoff'sRepresentation Theorem for algebra, we study subdirectlyirreducible S-posets and give this theo...

متن کامل

Ordered Compactifications of Products of Two Totally Ordered Spaces

We describe the semilattice of ordered compactifications ofX×Y smaller than βoX×βoY whereX and Y are certain totally ordered topological spaces, and where βoZ denotes the Stone–Čech orderedor Nachbin-compactification of Z. These basic cases are used to illustrate techniques for describing the semilattice of ordered compactifications ofX×Y smaller than βoX×βoY for arbitrary totally ordered topol...

متن کامل

Cardinality and Structure of Semilattices of Ordered Compactifications

Cardinalities and lattice structures which are attainable by semilattices of ordered compactifications of completely regular ordered spaces are examined. Visliseni and Flachsmeyer have shown that every infinite cardinal is attainable as the cardinality of a semilattice of compactifications of a Tychonoff space. Among the finite cardinals, however, only the Bell numbers are attainable as cardina...

متن کامل

Ordered Compactifications with Countable Remainders

Countable compactifications of topological spaces have been studied in [1], [5], [7], and [9]. In [7], Magill showed that a locally compact, T2 topological space X has a countable T2 compactification if and only if it has n-point T2 compactifications for every integer n ≥ 1. We generalize this theorem to T2-ordered compactifications of ordered topological spaces. Before starting our generalizat...

متن کامل

Subpullbacks and Po-flatness Properties of S-posets

In (Golchin A. and Rezaei P., Subpullbacks and flatness properties of S-posets. Comm. Algebra. 37: 1995-2007 (2009)) study was initiated of flatness properties of right -posets  over a pomonoid  that can be described by surjectivity of  corresponding to certain (sub)pullback diagrams and new properties such as  and  were discovered. In this article first of all we describe po-flatness propertie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006